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Introduction

* What is visual-inertial odometry (VIO) ?

The problem of motion tracking in unknown environments using
visual and inertial sensors. (no mapping)



Introduction

* Main algorithms
1. Extended Kalman filter (EKF)-based methods

2. Methods utilizing iterative minimization over a window of
states. (more accurate, but high computational cost)



Introduction

e Two families of EKF-based VIO estimators:

1. simultaneous localization and mapping. (EKF-SLAM)
2. sliding-window algorithms. (MSCKF)

MSCKF is more accurate and faster.



Introduction

* But MSCKF is not good enough.

Both EKF-SLAM and MSCKF are inconsistent.



Introduction

What is consistency?

A recursive estimator is consistent when the estimation errors
are zero-mean and have covariance matrix equal to that reported by
the estimator.



Introduction

* Main cause of inconsistency in the MSCKF (and EKF-SLAM):

The uncertainty of all states are underestimated.



Introduction

e EKF is faster, iterative-minimization algorithms is more accurate.

 |deally, one would like to obtain accuracy similar to, or better than,
that of iterative-minimization algorithms, but at the computational
cost of an EKF algorithm.

* In this paper, we show how this can be achieved.



Related Work

* EKF-SLAM
* MSCKF

In this paper, we compare the MSCKF’s accuracy and consistency to
those of EKF-SLAM methods, and show that the MSCKF outperforms
EKF-SLAM in these respects as well.



Related Work

A key contribution of this work is the analysis and improvement of the
consistency of EKF-based vision aided inertial navigation.

Past work on the consistency of 3D vision-based localization has
primarily focused on the parameterization of feature positions.



Related Work

(Civera et al., 2008) showed that the Cartesian-coordinate (XYZ)
parametrization results in severely non-Gaussian probability density
functions (pdfs) for the features, and degrades accuracy and
consistency. Therefore, an inverse-depth feature parametrization was

proposed.

Sola (2010) proposed an anchored homogeneous feature
parametrization that was shown to further. improve the filter’s

consistency



Related Work

In our work, we compare all of the above parameterizations in VIO and

show that, while the parameterization of (Sola, 2010) yields superior
results to the alternatives, its performance is still worse than that of

the MSCKF algorithm.



Related Work

This work is based on recent work examining the relationship between
the observability properties of the EKF’s linearized system model and
the filter’s consistency.

Observability < » Consistency



Related Work

What is observability properties ?

In control theory, observability is a measure for how well internal
states of a system can be inferred by knowledge of its external outputs.

Introduced by Kalman.



Related Work

Recent works showed that, due to the way in which Jacobians are
computed in the EKF, the robot’s orientation appears to be observable
in the linearized system model, while it is not in the actual, nonlinear

system.

As a result of this mismatch, the filter produces too small estimates for
the uncertainty of the orientation estimates, and becomes inconsistent.

Mismatch in observability | ) Inconsistent




EKF-based VIO

* IMU state

{G} global coordinate frame

{I} IMU coordinate frame
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EKF-based VIO

e EKF introduction

general nonlinear models

X =f(x,u)+w
Z = h(Xx)+n

linearized version of the discrete-time model

Xp+1 2 PoXp + Wy

I'g =~ Hgig - Iy

Used for covariance propagation and update, gain computation



EKF-based VIO

* IMU error state
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EKF-based VIO

* IMU error state

IMU error-state transition matrix

XIpt10 = (I)ffxfew + Wy,



EKF-based VIO

* A. EKF-SLAM
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EKF-based VIO

* A. EKF-SLAM

Measuremnt model

feature i in camera frame
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EKF-based VIO

* B. MSCKF

Pose



Algorithm 1 Multi-state-constraint Kalman filter
(MSCKF)

EKF-base

Propagation: Propagate state vector and covariance
matrix using IMU readings.

* B. MSCKF

Update: when a new image is recorded,

e State augmentation: augment the state vector and
state covariance matrix with the current IMU position
and orientation.

e Image processing: extract corner features and per-
form feature matching.

e Update: for each feature whose track is complete,
compute r{ and HY, and perform the Mahalanobis
test. Use all features that pass the test for an EKF
update.

e State management: remove from the state vector
those IMU states for which all associated features
have been processed.




EKF-based VIO

* B. MSCKF

We consider the case where the feature fi, observed from the N poses
in the MSCKF state vector, is used for an update at time step ¢ .

Computed by triangulation

s (7~
rij =2z — h(mTje—1,| ' Pr)
/i

= Hn;,-(ﬁjw—laaﬁﬁ)ijw—l + Hf#(ﬁjw—lfﬁﬁ) Py

‘{‘Ilfj

Linearization point



EKF

e Cor
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EKF-based VIO

We attribute to two main reasons

1. First, all EKF-SLAM algorithms assume that the errors of the IMU state and
feature positions are jointly Gaussian at each time step.

2. MSCKF employs a “delayed linearization” approach: it processes each
feature only when all of its measurements become available.

This means that more accurate feature estimates are used in computing
Jacobians, leading to more precise calculation of the Kalman gain and

state corrections, and ultimately better accuracy.



EKF consistency and relation to observability

* EKF consistency and relation to observability.

general nonlinear models

X =f(x,u)+w
Z = h(Xx)+n

linearized version of the discrete-time model

Xpr1 2 PoXp + Wy

l'g ~ Hng T Iy

Used for covariance propagation and update, gain computation



EKF consistency and relation to observability

* |t has been proved that when a camera/IMU system moves in a
general trajectory, in an environment with a known gravitational

acceleration but no known features, four degrees of freedom are
unobservable:

* (i) three of them corresponding to the global position

* (ii) one corresponding to the rotation about the gravity vector (i.e. the
yaw).



EKF consistency and relation to observability

 How to know linearized model’s unobservable subspace ?

studying the nullspace of the observability matrix
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EKF consistency and relation to observability

P

* before proceeding with the observability analysis, we must derive an
expression for error transition matrix.
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Observability properties of the MSCKF system
model

H

* Given a linear (or, equivalently, a linearized) model, the EKF-SLAM and
MSCKF measurement equations are equivalent.

* This means that we can study the observability of the MSCKF’s
linearized model by studying the EKF-SLAM linearized model, but
using the MSCKF’s linearization points.



Observability properties of the MSCKF system
model

e if feature iis processed at time step «@;+1

up to &; computed via triangulation
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EKF consistency and relation to observability

* “Ideal” observability matrix

use true value to compute observability matrix
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EKF consistency and relation to observability

* MISCKF observability matrix

O = My [TiHAT | =13 —Ad3 05 -+ Iz -+ 05]

Nullspace of observability matrix
Is 3 now.
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MSCKF 2.0

 Compute the IMU error-state transition matrix as
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Ig(X1£+1|£ﬂ

Xfew—l)

e Calculate measurement Jacobians as

He = Ji( X¢l; 5 Gf’f;) f R Ryjq,

HZ‘E = HEE[ L(Gﬁfé -

Ga
Prle—1

) <]

—I; 05 ]



Simulation results

* The idea of using the first estimates of all states to ensure the correct
observability properties of the linearized system model can also be
employed for EKF-SLAM VIO.

* The resulting EKF-SLAM algorithms outperform the standard ones,
yet cannot reach the accuracy or consistency of the MSCKF 2.0.
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Simulation results

* What can we infer ?

These results show that enforcing the correct observability properties
of the linearized system is crucially important for the performance of all
EKF-based VIO methods.

MSCKF copes better with nonlinearities by not making Gaussian
assumptions about the feature pdfs.



Simulation results

* What can we infer ?

This indicates that, as long as the correct observability properties are

ensured, using slightly less accurate linearization points in computing

the Jacobians does not significantly degrade the estimation
performance.
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Real-world experiment

e Configuration

Area:
IMU:

Cameara:

Feature extraction:

Ground truth:
Period:

streets of Riverside, CA

Xsens MTi-G unit, 100 Hz
PointGrey Bumblebee?2 , 20 Hz
Shi-Tomasi algorithm

GPS—INS estimate of the trajectory
37 minutes, approximately 21.5 km.



Real-world experiment

Fig. 7. Sample images recorded during the experiment.



Real-world experiment
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Real-world experiment
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Fig. 6. Estimation errors for the three approaches. The left plots are the results for the MSCKF 2.0, and the right plots for the MSCKF
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Conclusion

* We showed that the MSCKF algorithm attains better accuracy and
consistency than EKF-based SLAM due to its less strict probabilistic
assumptions and delayed linearization.

* In addition, we performed a rigorous study of the consistency
properties of EKF-based VIO algorithms, and the proposed MSCKF 2.0
algorithm is capable of performing long-term, high-precision,
consistent VIO in real time.
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