Siamese Network: Architecture and Applications in Computer Vision

Tech Report

Dec 30, 2014

Hengliang Luo

Outline

- Metric Learning
- Siamese Architecture
- Siamese Network: Applications in computer vision
- Triplet Network
- Conclusion

Siamese

- Someone or something from Thailand:
 - The Thai language, The Thai people

- Siamese, an informal term for conjoined or fused:
 - Siamese twins, conjoined twins
 - Siamesing (engineering), the practice, whose name is derived from siamese twins, of combining two devices (such as cylinder ports or cooling jackets) together into a closely coupled pair, so as to save space between them.

Metric Learning

• Euclidean distance vs Mahalanobis distance

Metric Learning

Mahalanobis Distance Metric Learning

- Euclidean distance
- Mahalanobis distance $d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} \vec{y})^T S^{-1} (\vec{x} \vec{y})}$.
- Mahalanobis Distance Metric Learning

$$d(x,y) = d_{A}(x,y) = ||x - y||_{A} = \sqrt{(x - y)^{T} A(x - y)}$$

$$\min_{A} \sum_{(x_{i},x_{j}) \in \mathcal{S}} ||x_{i} - x_{j}||_{A}^{2}$$
s.t.
$$\sum_{(x_{i},x_{j}) \in \mathcal{D}} ||x_{i} - x_{j}||_{A} \ge 1$$

$$A \succeq 0$$

Xing E P, Jordan M I, Russell S, et al. Distance metric learning with application to clustering with side-information[C], NIPS2002: 505-512.

Metric Learning

Large-Margin Nearest Neighbors(LMNN)

$$\min_{A\succeq 0} \sum_{(i,j)\in\mathcal{S}} d_A(\boldsymbol{x}_i,\boldsymbol{x}_j) + \lambda \sum_{(i,j,k)\in\mathcal{R}} [1 + d_A(\boldsymbol{x}_i,\boldsymbol{x}_j) - d_A(\boldsymbol{x}_i,\boldsymbol{x}_k)]_+$$

Siamese Architecture

Siamese Architecture and loss function

Make this small Make this large

Similar images (neighbors in the neighborhood graph)

Dissimilar images (non-neighbors in the neighborhood graph)

Learning Hierarchies of Invariant Features. Yann LeCun. helper.ipam.ucla.edu/publications/gss2012/gss2012 10739.pdf

Application in Signature Verification

The input is 8(feature)
 x 200(time) units.

 The cosine distance was used, (1 for genuine pairs, -1 for forgery pairs)

Bromley J, Guyon I, Lecun Y, et al. Signature Verification using a" Siamese" Time Delay Neural Network, NIPS Proc. 1994.

Application in Dimensionality reduction

The exact loss function is

$$L(W, Y, \vec{X_1}, \vec{X_2}) = (1 - Y)\frac{1}{2}(D_W)^2 + (Y)\frac{1}{2}\{max(0, m - D_W)\}^2$$

Application in Dimensionality reduction

LearnedMapping of MNIST samples

Learning a Shift Invariant Mapping of MNIST samples

Image Descriptors

Application in Learning Image Descriptors (I)

Using the contrastive cost function

$$l_{\theta}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right) = \begin{cases} s_{ij}d_{ij}^{2}, & \text{if matching} \\ \max\left(1.0 - d_{ij}^{2}, 0\right), & \text{if non-matching} \end{cases}$$

Nicholas Carlevaris-Bianco and Ryan M. Eustice, Learning visual feature descriptors for dynamic lighting conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014

Application in Learning Image Descriptors (I)

CNN Model

Nicholas Carlevaris-Bianco and Ryan M. Eustice, Learning visual feature descriptors for dynamic lighting conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014

Application in Learning Image Descriptors ($I\!I$)

$$d_D(\mathbf{x}_1, \mathbf{x}_2) = \|D(\mathbf{x}_1) - D(\mathbf{x}_2)\|_2$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta) = \delta \cdot l_P(d_D(\mathbf{x}_1, \mathbf{x}_2)) + (1 - \delta) \cdot l_N(d_D(\mathbf{x}_1, \mathbf{x}_2))$$

$$l_P(d_D(\mathbf{x}_1, \mathbf{x}_2)) = d_D(\mathbf{x}_1, \mathbf{x}_2)$$

$$l_N(d_D(\mathbf{x}_1, \mathbf{x}_2)) = \max(0, m - d_D(\mathbf{x}_1, \mathbf{x}_2))$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta)$$

$$l(\mathbf{x}_1, \mathbf{x}_2, \delta)$$

Fracking Deep Convolutional Image Descriptors, Under review as a conference paper at ICLR 2015, http://arxiv.org/abs/1412.6537

Convolutional Neural Networks learn compact local image descriptors, http://arxiv.org/abs/1304.7948

Face recognition

1. Face identification

Multiclass classification

2. Face verification

Α

В

Application in face verification (I)

Let X_1 and X_2 be a pair of images shown to our learning machine. Let Y be a binary label of the pair, Y = 0 if the images X_1 and X_2 belong to the same person (a "genuine pair") and Y = 1 otherwise (an "impostor pair").

We assume that the loss function depends on the input and the parameters only indirectly through the energy. Our loss function is of the form:

$$\mathcal{L}(W) = \sum_{i=1}^{P} L(W, (Y, X_1, X_2)^i)$$

$$L(W, (Y, X_1, X_2)^i) = (1 - Y)L_G \left(E_W(X_1, X_2)^i \right)$$

$$+ YL_I \left(E_W(X_1, X_2)^i \right)$$

$$= (1 - Y)\frac{2}{Q} (E_W)^2 + (Y)2Q e^{-\frac{2.77}{Q}E_W}$$

$$E_W = ||G_W(X_1) - G_W(X_2)||$$

Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification, CVPR 2005

Application in face verification (II)

LFW:90.68%

Application in face verification(II)

$$d_f^2(x_i, x_j) < \tau - 1, l_{ij} = 1$$

$$d_f^2(x_i, x_j) > \tau + 1, l_{ij} = -1$$

$$\ell_{ij} \left(\tau - d_f^2(\mathbf{x}_i, \mathbf{x}_j) \right) > 1$$

Intuitive illustration of the proposed DDML method

DDML as the following optimization problem:

$$\arg \min_{f} J = J_1 + J_2 \qquad \text{the hid}$$

$$= \frac{1}{2} \sum_{i,j} g \left(1 - \ell_{ij} \left(\tau - d_f^2(\mathbf{x}_i, \mathbf{x}_j) \right) \right)$$

+
$$\frac{\lambda}{2} \sum_{m=1}^{M} (\|\mathbf{W}^{(m)}\|_F^2 + \|\mathbf{b}^{(m)}\|_2^2)$$

where $g(z) = \frac{1}{\beta} \log (1 + \exp(\beta z))$ is the generalized logistic loss function [25], which is a smoothed approximation of the hinge loss function $[z]_+ = \max(z, 0)$

Junlin Hu, etc. Discriminative Deep Metric Learning for Face Verification in the Wild, CVPR 2014

Classification Network

Application in face verification (IV)

LFW:97.35%

Verification Metric:

- 1)Cosine similarity
- 2) Weighted χ^2 distance $\chi^2(f_1, f_2) = \sum_i w_i (f_1[i] f_2[i])^2 / (f_1[i] + f_2[i])$
- 3) Siamese network $d(f_1, f_2) = \sum_i \alpha_i |f_1[i] f_2[i]|$

Classification Network

Application in face verification (III)

LFW:97.45%

Face Verification: Joint Bayesian

Classification & Siamese Network

Application in face verification (V)

LFW:99.15%

Figure 1: The ConvNet structure for DeepID2 extraction.

Deep Learning Face Representation by Joint Identification-Verification

Classification & Siamese Network

Application in face verification (V)

1. identification loss(cross-entropy)

$$Ident(f, t, \theta_{id}) = -\sum_{i=1}^{n} -p_i \log \hat{p}_i = -\log \hat{p}_t$$

2. verification loss (contrastive)

$$\operatorname{Verif}(f_i, f_j, y_{ij}, \theta_{ve}) = \begin{cases} \frac{1}{2} \|f_i - f_j\|_2^2 & \text{if } y_{ij} = 1\\ \frac{1}{2} \max \left(0, m - \|f_i - f_j\|_2\right)^2 & \text{if } y_{ij} = -1 \end{cases}$$

3. verification loss (cosine)

$$Verif(f_i, f_j, y_{ij}, \theta_{ve}) = \frac{1}{2} (y_{ij} - \sigma(wd + b))^2$$

where $d = \frac{f_i \cdot f_j}{\|f_i\|_2 \|f_j\|_2}$ is the cosine similarity

Classification & Siamese Network

Application in face verification (V)

Table 1: The DeepID2 learning algorithm.

input: training set $\chi = \{(x_i, l_i)\}$, initialized parameters θ_c , θ_{id} , and θ_{ve} , hyperparameter λ , learning rate $\eta(t)$, $t \leftarrow 0$

while not converge do

$$t \leftarrow t+1 \quad \text{sample two training samples } (x_i, l_i) \text{ and } (x_j, l_j) \text{ from } \chi$$

$$f_i = \text{Conv}(x_i, \theta_c) \text{ and } f_j = \text{Conv}(x_j, \theta_c)$$

$$\nabla \theta_{id} = \frac{\partial \text{Ident}(f_i, l_i, \theta_{id})}{\partial \theta_{id}} + \frac{\partial \text{Ident}(f_j, l_j, \theta_{id})}{\partial \theta_{id}}$$

$$\nabla \theta_{ve} = \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial \theta_{ve}}, \text{ where } y_{ij} = 1 \text{ if } l_i = l_j, \text{ and } y_{ij} = -1 \text{ otherwise.}$$

$$\nabla f_i = \frac{\partial \text{Ident}(f_i, l_i, \theta_{id})}{\partial f_i} + \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial f_i}$$

$$\nabla f_j = \frac{\partial \text{Ident}(f_j, l_j, \theta_{id})}{\partial f_j} + \lambda \cdot \frac{\partial \text{Verif}(f_i, f_j, y_{ij}, \theta_{ve})}{\partial f_j}$$

$$\nabla \theta_c = \nabla f_i \cdot \frac{\partial \text{Conv}(x_i, \theta_c)}{\partial \theta_c} + \nabla f_j \cdot \frac{\partial \text{Conv}(x_j, \theta_c)}{\partial \theta_c}$$

$$\text{update } \theta_{id} = \theta_{id} - \eta(t) \cdot \theta_{id}, \theta_{ve} = \theta_{ve} - \eta(t) \cdot \theta_{ve}, \text{ and } \theta_c = \theta_c - \eta(t) \cdot \theta_c.$$
end while output θ_c

From Siamese to Triplet Network

Application in Image ranking

Sample images from the triplet dataset

Application in Image ranking

Application in Image ranking

Jiang Wang, etc. Learning Fine-grained Image Similarity with Deep Ranking. CVPR 2014

Application in Image ranking

Distance

$$D(f(P), f(Q)) = ||f(P) - f(Q)||_2^2$$

$$D(f(p_i), f(p_i^+)) < D(f(p_i), f(p_i^-)),$$

 $\forall p_i, p_i^+, p_i^- \text{ such that } r(p_i, p_i^+) > r(p_i, p_i^-)$

Hinge Loss

$$l(p_i, p_i^+, p_i^-) = \max\{0, g + D(f(p_i), f(p_i^+)) - D(f(p_i), f(p_i^-))\}$$

Application in deep metric learning

$$TripletNet(x, x^{-}, x^{+}) = \begin{bmatrix} ||Net(x) - Net(x^{-})||_{2} \\ ||Net(x) - Net(x^{+})||_{2} \end{bmatrix} \in \mathbb{R}^{2}_{+}$$

SoftMax function is applied on both outputs

Elad Hoffer, etc. DEEP METRIC LEARNING USING TRIPLET NETWORK. Under review as a conference paper at ICLR 2015 http://arxiv.org/abs/1412.6622

Application in deep metric learning

2D VISUALIZATION OF FEATURES of CIFAR10

Conclusion

The loss function in Siamese Network is very important.

Mixed Network Architecture can improve the performance.

• Caffe implementation of Siamese Network: http://caffe.berkeleyvision.org/gathered/examples/siamese.html

Thank you!